Starten Sie Ihre Suche...


Wir weisen darauf hin, dass wir technisch notwendige Cookies verwenden. Weitere Informationen

Prof. Dr. Hans-Peter Beise

Informatik, Hochschule Trier

Publikationen
Ergebnisse pro Seite:  10

Beise, Hans-Peter; Albared, Mohammed; Stüber, Manfred

How confident and reliable are deep learning models for streamflow prediction under flood conditions

Natural Hazards. Bd. accepted for publication. Springer 2025


Vieira, Cândido; Lücken, Volker; Diewald, Andreas Richard et al.

Steering-Layer : A Hybrid DSP-Machine Learning Layer for Sensor DoA Estimation

2024 15th German Microwave Conference (GeMiC) : March 11-13, 2024, Duisburg, Germany. NN: IEEE 2024 S. 245 - 248


Beise, Hans-Peter; Dias Da Cruz, Steve

Topological properties of basins of attraction of width bounded autoencoders

Analysis and Applications. Bd. 22. H. 6. 2024 S. 965 - 980


Schuler, Nicolas; Hoffmann, Maximilian; Beise, Hans-Peter et al.

Semi-supervised similarity learning in process-oriented case-based reasoning

Bramer, Max; Stahl, Frederic (Hrsg). Artificial Intelligence XL : SGAI International Conference on Artificial Intelligence (AI-2023). Cham: Springer Nature Switzerland 2023 S. 159 - 173


Schuler, Nicolas; Hoffmann, Maximilian; Beise, Hans-Peter et al.

Semi-supervised Similarity Learning in Process-Oriented Case-Based Reasoning.

SGAI Conf. 2023 S. 159 - 173


Sokolowski, Jan; Schulz, Volker; Beise, Hans-Peter et al.

A hybrid objective function for robustness of artificial neural networks - estimation of parameters in a mechanical system

ETNA - Electronic Transactions on Numerical Analysis. Bd. 56. 2022 S. 209 - 234


Gasperini, David; Biese, Hans-Peter; Schröder, Udo et al.

A multi-harmonic finite element method for scattering problems with small-amplitude boundary deformations

SIAM Journal on Scientific Computing. Bd. 44. H. 2. Society for Industrial & Applied Mathematics (SIAM) 2022 B197-B223


Gasperini, David; Beise, Hans-Peter; Schröder, Udo et al.

An analysis of the steepest descent method to efficiently compute the 3D acoustic single-layer operator in the high-frequency regime

IMA Journal of Numerical Analysis. Bd. 43. H. 3. Oxford University Press (OUP) 2022 S. 1831 - 1854


Beise, Hans-Peter; Frerick, Leonhard; Müller, Jürgen

Mixing operators with prescribed unimodular eigenvalues

Ergodic Theory and Dynamical Systems. Bd. 42. H. 1. Cambridge University Press (CUP) 2022 S. 1 - 8


Gasperini, David; Beise, Hans-Peter; Schröder, Udo et al.

A frequency domain method for scattering problems with moving boundaries

Wave Motion. Bd. 102. Elsevier BV 2021 102717