
Beise, Hans-Peter; Dias Da Cruz, Steve; Schröder, Udo
On decision regions of narrow deep neural networksNeural Networks. Bd. 140. Elsevier BV 2021 S. 121 - 129
Dias Da Cruz, Steve; Wasenmüller, Oliver; Beise, Hans-Peter et al.
SVIRO: Synthetic Vehicle Interior Rear Seat Occupancy Dataset and Benchmark2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Danvers, Massachusetts: IEEE 2020 S. 962 - 971
Dias Da Cruz, Steve; Beise, Hans-Peter; Schröder, Udo et al.
A Theoretical Investigation of the Detection of Vital Signs in Presence of Car Vibrations and RADAR-Based Passenger ClassificationIEEE Transactions on Vehicular Technology. Bd. 68. H. 4. Institute of Electrical and Electronics Engineers (IEEE) 2019 S. 3374 - 3385
Dias Da Cruz, Steve; Beise, Hans-Peter; Schröder, Udo et al.
Detection of vital signs in presence of car vibrations and RADAR-based passenger classificationRohling, Hermann (Hrsg). 2018 19th International Radar Symposium (IRS). Göttingen: Cuvillier Verlag 2018 S. 1 - 10
Karahasanovic, Una; Stifter, Thomas; Beise, Hans-Peter et al.
Mathematical modelling and simulations of complex breathing patterns detected by RADAR sensorsRohling, Hermann (Hrsg). 2018 19th International Radar Symposium (IRS). Göttingen: Cuvillier Verlag 2018 S. 1 - 10
Beise, Hans-Peter; Stifter, Thomas; Schröder, Udo
Virtual interference study for FMCW and PMCW radar2018 11th German Microwave Conference (GeMiC). Ratingen: IEEE 2018 S. 351 - 354
Beise, Hans-Peter; Müller, Jürgen
Generic boundary behaviour of Taylor series in Hardy and Bergman spacesMathematische Zeitschrift. Bd. 284. H. 3-4. Springer 2016 S. 1185 - 1197
Müller, Jürgen; Beise, Hans-Peter; Meyrath, Thierry
Limit functions of discrete dynamical systemsConformal Geometry and Dynamics. Bd. 18. H. 4. American Mathematical Society 2015 S. 56 - 64
Müller, Jürgen; Beise, Hans-Peter; Meyrath, Thierry
Mixing Taylor shifts and universal Taylor seriesBulletin of the London Mathematical Society. Bd. 47. 2015 S. 136 - 142
Beise, Hans-Peter
On the intersection of the spectrum of frequently hypercyclic operators with the unit circleJournal of Operator Theory. Bd. 72. H. 2. Theta Foundation 2014 S. 329 - 342
