Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Synthesis, radiosynthesis and evaluation of dimeric amino acid chelator complexes for tumor diagnostic and PET

Laufzeit: 01.01.2010 - 31.12.2011

Kurzfassung


Glioblastoma is the most common and most aggressive type of primary brain tumor in humans. For the development of new effective treatment strategies, it is crucial to monitor tumor growth and spreading with sensitive markers. Labeled amino acids, such as 18F-tyrosine, are being used to detect tumors by positron emission tomography. Suitable 68Ga-labeled amino acids could have a high clinical relevance, because 68Ga can be generated by a 68Ge/68Ga-generator system and can thus be made...Glioblastoma is the most common and most aggressive type of primary brain tumor in humans. For the development of new effective treatment strategies, it is crucial to monitor tumor growth and spreading with sensitive markers. Labeled amino acids, such as 18F-tyrosine, are being used to detect tumors by positron emission tomography. Suitable 68Ga-labeled amino acids could have a high clinical relevance, because 68Ga can be generated by a 68Ge/68Ga-generator system and can thus be made available for routine diagnostic.

The goal of this project is to synthesize and evaluate 68Ga-containing dimeric amino acid chelator complexes for tumor diagnostic and PET. 

Our part is the identification of amino acid transporters in glioma cells that serve as docking station for the amino-acid-containing complexes. We further aim to elucidate the mechanism with which the complexes are internalized in tumor cells.» weiterlesen» einklappen

Beteiligte Einrichtungen