Suche
27343 Treffer
×
Universität Koblenz
×
Hochschule Kaiserslautern
×
Hochschule für Wirtschaft und Gesellschaft Ludwigshafen
×
Hochschule Trier
×
Technische Hochschule Bingen
- Hintermüller, Michael; Hinze, Michael; Hoppe, Ronald H. W.
- Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state- constraints
- Journal of Computational Mathematics. Bd. 30. H. 2. Hong Kong: Global Science Press 2012 S. 101 - 123
- Hinze, Michael; Vierling, Morten
- Optimal Control of the Laplace-Beltrami Operator on Compact Surfaces-Concept and Numerical Treatment
- Journal of Computational Mathematics. Bd. 30. H. 4. Hong Kong: Global Science Press 2012 S. 392 - 403
- Hinze, Michael; Schiela, Anton
- Discretization of interior point methods for state constrained elliptic optimal control problems: Optimal error estimates and parameter adjustment
- Computational Optimization and Applications. Bd. 48. H. 3. New York, NY: Springer 2011 S. 581 - 600
- Gong, Wei; Hinze, Michael
- Error estimates for parabolic optimal control problems with control and state constraints
- Computational Optimization and Applications. Bd. 56. H. 1. New York, NY: Springer 2013 S. 131 - 151
- Ahmad Ali, Ahmad; Deckelnick, Klaus; Hinze, Michael
- Global minima for semilinear optimal control problems
- Computational Optimization and Applications. Bd. 65. H. 1. New York, NY: Springer 2016 S. 261 - 288
- Hinze, Michael; Meyer, C.
- Stability of semilinear elliptic optimal control problems with pointwise state constraints
- Computational Optimization and Applications. Bd. 52. H. 1. New York, NY: Springer 2012 S. 87 - 114
- Hinze, Michael; Meyer, C.
- Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems
- Computational Optimization and Applications. Bd. 46. H. 3. New York, NY: Springer 2010 S. 487 - 510
- Deckelnick, Klaus; Hinze, Michael
- A note on the approximation of elliptic control problems with bang-bang controls
- Computational Optimization and Applications. Bd. 51. H. 2. New York, NY: Springer 2012 S. 931 - 939
- Hinze, Michael; Pinnau, René
- Second-Order Approach to Optimal Semiconductor Design
- Journal of Optimization Theory and Applications. Bd. 133. H. 2. Dordrecht: Springer 2007 S. 179 - 199
- Hinze, Michael; Yan, Ningning; Zhou, Zhaojie
- Variational Discretization for Optimal Control Governed by Convection Dominated Diffusion Equations
- Journal of Computational Mathematics. Bd. 27. H. 2-3. Hong Kong: Global Science Press 2009 S. 237 - 253