Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Analysing and Identifying Geospatial Key Factors in Smart Cities: Model Enhancements in the Use Case of Carpark Occupancy

GI_Forum: Designing Future with Geoinformatics. Bd. 10. H. 2. Salzburg: Verlag der Österreichischen Akademie der Wissenschaften 2022 S. 32 - 46 s32

Erscheinungsjahr: 2022

Publikationstyp: Zeitschriftenaufsatz (Konferenzbeitrag)

Sprache: Deutsch

Bemerkung: auch die DOI 10.1553/giscience2022_02_s32 scheint fehlerhaft zu sein

Doi/URN: 10.1553/giscience2022_02_s32

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


Urban planning benefits significantly from improved knowledge concerning spatiotemporal relationships and patterns in cities based on geospatial factors. In this context, the potential of geodata seems inexhaustible. Applications include limited-service offers like carparks, the occupancy of which is controlled by geospatial factors characterized by their spatiotemporal patterns. This paper proposes an enhanced model for identifying geospatial key factors, tying in with an existing geo-analyt...Urban planning benefits significantly from improved knowledge concerning spatiotemporal relationships and patterns in cities based on geospatial factors. In this context, the potential of geodata seems inexhaustible. Applications include limited-service offers like carparks, the occupancy of which is controlled by geospatial factors characterized by their spatiotemporal patterns. This paper proposes an enhanced model for identifying geospatial key factors, tying in with an existing geo-analytics model. Our approach combines real-world empirical data for off-street parking with open-source geodata on points of interest. We formulate stabilization measures in different model-enhancement stages to optimize model reliability and fit, based on analyses of statistical characteristics. Additionally, we consider modifying the choice of geospatial factors in order to reduce multicollinearity. Our results show improved reliability of geo-analytics for the identification of urban spatiotemporal relationships.» weiterlesen» einklappen

  • geo-analytics
  • metric of geospatial impact
  • urban analysis
  • smart city planning
  • smart mobility

Autoren


Radu, Pauline (Autor)

Klassifikation


DFG Fachgebiet:
Geographie

DDC Sachgruppe:
Informatik

Verbundene Forschungsprojekte


Verknüpfte Personen