Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Spin transport across antiferromagnets induced by the spin Seebeck effect

Journal of physics : D, Applied physics. Bd. 51. H. 14. Bristol: IOP Publ. 2018 Art. 14404

Erscheinungsjahr: 2018

ISBN/ISSN: 0022-3727 ; 1361-6463

Publikationstyp: Zeitschriftenaufsatz (Forschungsbericht)

Sprache: Englisch

Doi/URN: urn:nbn:de:hebis:77-publ-591947

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


For prospective spintronics devices based on the propagation of pure spin currents, antiferromagnets are an interesting class of materials that potentially entail a number of advantages as compared to ferromagnets. Here, we present a detailed theoretical study of magnonic spin current transport in ferromagnetic-antiferromagnetic multilayers by using atomistic spin dynamics simulations. The relevant length scales of magnonic spin transport in antiferromagnets are determined. We demonstrate the...For prospective spintronics devices based on the propagation of pure spin currents, antiferromagnets are an interesting class of materials that potentially entail a number of advantages as compared to ferromagnets. Here, we present a detailed theoretical study of magnonic spin current transport in ferromagnetic-antiferromagnetic multilayers by using atomistic spin dynamics simulations. The relevant length scales of magnonic spin transport in antiferromagnets are determined. We demonstrate the transfer of angular momentum from a ferromagnet into an antiferromagnet due to the excitation of only one magnon branch in the antiferromagnet. As an experimental system, we ascertain the transport across an antiferromagnet in Y3Fe5O12 vertical bar Ir20Mn80 vertical bar Pt heterostructures. We determine the spin transport signals for spin currents generated in the Y3Fe5O12 by the spin Seebeck effect and compare to measurements of the spin Hall magnetoresistance in the heterostructure stack. By means of temperature-dependent and thickness-dependent measurements, we deduce conclusions on the spin transport mechanism across Ir20Mn80 and furthermore correlate it to its paramagnetic-antiferromagnetic phase transition.» weiterlesen» einklappen

Autoren


Cramer, Joel (Autor)
Ritzmann, Ulrike (Autor)
Dong, Bo-Wen (Autor)
Jaiswal, Samridh (Autor)
Qiu, Zhiyong (Autor)
Saitoh, Eiji (Autor)
Nowak, Ulrich (Autor)
Kläui, Mathias (Autor)

Klassifikation


DDC Sachgruppe:
Physik