Starten Sie Ihre Suche...


Wir weisen darauf hin, dass wir technisch notwendige Cookies verwenden. Weitere Informationen

SINDBAD and SiQL : an inductive database and query language in the relational model

Daelemans, Walter (Hrsg). Machine learning and knowledge discovery in databases. Pt. 2. Berlin u.a.: Springer 2008 S. 690 - 694

Erscheinungsjahr: 2008

ISBN/ISSN: 978-3-540-87480-5

Publikationstyp: Buchbeitrag (Konferenzbeitrag)

Sprache: Englisch

Doi/URN: 10.1007/978-3-540-87481-2_48

Volltext über DOI/URN

Geprüft:Bibliothek

Inhaltszusammenfassung


In this demonstration, we will present the concepts and an implementation of an inductive database, as proposed by Imielinski and Mannila, in the relational model. The goal is to support all steps of the knowledge discovery process on the basis of queries to a database system. The query language SiQL (structured inductive query language), an SQL extension, offers query primitives for feature selection, discretization, pattern mining, clustering, instance-based learning and rule induction. A p...In this demonstration, we will present the concepts and an implementation of an inductive database, as proposed by Imielinski and Mannila, in the relational model. The goal is to support all steps of the knowledge discovery process on the basis of queries to a database system. The query language SiQL (structured inductive query language), an SQL extension, offers query primitives for feature selection, discretization, pattern mining, clustering, instance-based learning and rule induction. A prototype system processing such queries was implemented as part of the SINDBAD (structured inductive database development) project. To support the analysis of multi-relational data, we incorporated multi-relational distance measures based on set distances and recursive descent. The inclusion of rule-based classification models made it necessary to extend the data model and software architecture significantly. The prototype is applied to three different data sets: gene expression analysis, gene regulation prediction and structure-activity relationships (SARs) of small molecules.» weiterlesen» einklappen

Autoren


Wicker, Jörg (Autor)
Richter, Lothar (Autor)
Kessler, Kristina (Autor)
Kramer, Stefan (Autor)

Klassifikation


DFG Fachgebiet:
4.43 - Informatik

DDC Sachgruppe:
Informatik