Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Long-term stream invertebrate community alterations induced by the insecticide thiacloprid: Effect concentrations and recovery dynamics

SCIENCE OF THE TOTAL ENVIRONMENT. Bd. 405. H. 1-3. 2008 S. 96 - 108

Erscheinungsjahr: 2008

ISBN/ISSN: 0048-9697

Publikationstyp: Zeitschriftenaufsatz

Doi/URN: 10.1016/j.scitotenv.2008.07.001

Volltext über DOI/URN

GeprüftBibliothek

Inhaltszusammenfassung


In pesticide risk assessment, effect concentrations and dynamics of long-term community-level effects caused by pulse exposures remain to be investigated. This is because long-term experiments are exceptionally rare, and most of the previously investigated communities had low proportions of sensitive long-living species. The aim of the present study was to investigate the effect of a single pulse contamination with the insecticide thiacloprid. on invertebrates. We employed mesocosms designed ...In pesticide risk assessment, effect concentrations and dynamics of long-term community-level effects caused by pulse exposures remain to be investigated. This is because long-term experiments are exceptionally rare, and most of the previously investigated communities had low proportions of sensitive long-living species. The aim of the present study was to investigate the effect of a single pulse contamination with the insecticide thiacloprid. on invertebrates. We employed mesocosms designed to realistically mimic communities in small streams within the agricultural landscape. Specifically, the objectives were to (i) compare the community Lowest-Observed-Effect Concentration (LOEC) with organism-level median lethal concentrations (LC50), and (ii) to assess recovery dynamics with special focus on short- and long-living taxa. The contamination resulted in long-term alteration of the overall invertebrate community structure (7 months, until the end of the experiment). Longterm community LOEC was 3.2 mu g/L (Redundancy Analysis), slightly below the acute LCSOs known for sensitive invertebrates relevant to the mesocosm community. However, one species (stonefly Nemoura cinerea) was affected at the lowest tested concentration, 70 times below the lowest known LC50. Concerning time to recovery from the effect, we found that the duration depends on the life-cycle characteristics of species, but not on the toxicant concentration: short-living (mulivoltine) species recovered after 10 weeks following contamination, whereas long-living (uni- and semivoltine) species did not recover until the end of the experiment (7 months). The present example shows that concentrations of pesticides at which majority of the species is affected can be predicted by acute organism-level toxicity tests with sensitive species. However, tests with longer observation periods, as well as consideration of environmental factors and inter-taxon variability in sensitivity are required to predict effects on all species comprising a community. Realistic prediction of community recovery dynamics requires consideration of the species' life -cycle traits. (C) 2008 Elsevier B.V. All rights reserved. » weiterlesen» einklappen

Autoren


Beketov, Mikhail A. (Autor)
Marwitz, Andreas (Autor)
Paschke, Albrecht (Autor)
Liess, Matthias (Autor)

Verknüpfte Personen