Starten Sie Ihre Suche...


Wir weisen darauf hin, dass wir technisch notwendige Cookies verwenden. Weitere Informationen

Coordinate‐invariant phase field modeling of ferro‐electrics, part I: Model formulation and single‐crystal simulations

GAMM-Mitteilungen. Bd. 38. H. 1. Wiley 2015 S. 102 - 114

Erscheinungsjahr: 2015

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.1002/gamm.201510005

Volltext über DOI/URN

Geprüft:Bibliothek

Inhaltszusammenfassung


An electro-mechanically coupled phase field model for ferroelectric domain evolution is introduced. Based on Gurtin's concept of a microforce balance, a generalized Ginzburg-Landau evolution equation is derived from the second law of thermodynamics. The thermodynamic potential is formulated for transversely isotropic material behavior by adopting a coordinateinvariant formulation. The model is reduced to 2D and implemented into a finite element framework. The numerical simulations concern the...An electro-mechanically coupled phase field model for ferroelectric domain evolution is introduced. Based on Gurtin's concept of a microforce balance, a generalized Ginzburg-Landau evolution equation is derived from the second law of thermodynamics. The thermodynamic potential is formulated for transversely isotropic material behavior by adopting a coordinateinvariant formulation. The model is reduced to 2D and implemented into a finite element framework. The numerical simulations concern the microstructure evolution in mechanically clamped BaTiO3 single-crystals. In the second part of this contribution Keip et al. [1], the poling behavior of ferroelectric composites and polycrystals is investigated with regard to size effects and the influence of a discontinuous order parameter field across grain boundaries. (© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)» weiterlesen» einklappen

Autoren


Schrade, D. (Autor)
Keip, M.‐A. (Autor)
Thai, H. (Autor)
Schröder, J. (Autor)
Svendsen, B. (Autor)
Müller, R. (Autor)
Gross, D. (Autor)

Klassifikation


DFG Fachgebiet:
4.32-04 - Computergestütztes Werkstoffdesign und Simulation von Werkstoffverhalten von atomistischer bis mikroskopischer Skala

DDC Sachgruppe:
Technik

Verknüpfte Personen


Beteiligte Einrichtungen