Starten Sie Ihre Suche...


Wir weisen darauf hin, dass wir technisch notwendige Cookies verwenden. Weitere Informationen

Analysis of Semi-Global Factors Influencing the Prediction of Crash Severity

ISPRS International Journal of Geo-Information. Bd. 14. H. 11. MDPI AG 2025 S. 454 - 481

Erscheinungsjahr: 2025

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.3390/ijgi14110454

Volltext über DOI/URN

Geprüft:Bibliothek

Inhaltszusammenfassung


As road users and means of transport in Germany become more diverse, we must better understand the causes and influencing factors of serious crashes. The aim of this work is to develop an AI-supported analysis approach that identifies and clearly visualizes the causes of crashes and their impact on crash severity in the urban area of the city of Mainz. The machine learning models predict crash severity and use Shapley values as explainability methods to make the underlying patterns understand...As road users and means of transport in Germany become more diverse, we must better understand the causes and influencing factors of serious crashes. The aim of this work is to develop an AI-supported analysis approach that identifies and clearly visualizes the causes of crashes and their impact on crash severity in the urban area of the city of Mainz. The machine learning models predict crash severity and use Shapley values as explainability methods to make the underlying patterns understandable for urban planners, safety personnel, and other stakeholders. A particular challenge lies in presenting these complex relationships in a user-friendly way through visualizations and interactive maps.» weiterlesen» einklappen

  • crash data
  • XGBoost
  • classification
  • shapley-values
  • geovisualization

Autoren


Frank, Johannes (Autor)
Böhm, Klaus (Autor)

Klassifikation


DDC Sachgruppe:
Informatik

Verknüpfte Personen