Starten Sie Ihre Suche...


Wir weisen darauf hin, dass wir technisch notwendige Cookies verwenden. Weitere Informationen

GC-Analyzer – Analyzing Spatiotemporal Correlations for Demand-Driven Services: Using an Interactive GeoVisual Analytics Approach in Decision-Making

Advances in Cartography and GIScience of the ICA. Bd. 5. Copernicus GmbH 2025 S. 1 - 8

Erscheinungsjahr: 2025

Publikationstyp: Zeitschriftenaufsatz

Sprache: Englisch

Doi/URN: 10.5194/ica-adv-5-27-2025

Volltext über DOI/URN

Geprüft:Bibliothek

Inhaltszusammenfassung


Understanding spatiotemporal relationships is essential for effective urban decision-making. In this context, interactive geovisualizations offer the promising potential to support precise, rational-analytical decision processes. This paper examines a refined version of our GeoVisual Analytics tool called GC-Analyzer for analyzing spatiotemporal relationships in urban environments. We report the results of a case study where the tool was utilized in planning parking garages in a city and disc...Understanding spatiotemporal relationships is essential for effective urban decision-making. In this context, interactive geovisualizations offer the promising potential to support precise, rational-analytical decision processes. This paper examines a refined version of our GeoVisual Analytics tool called GC-Analyzer for analyzing spatiotemporal relationships in urban environments. We report the results of a case study where the tool was utilized in planning parking garages in a city and discuss the benefits of an interactive, geovisual analysis approach. We compare the GC-Analyzer approach with a conventional tabular representation of spatiotemporal correlations in a controlled usability study with expert users, evaluating two real-world analysis scenarios. Findings reveal that the GC-Analyzer provides substantial added value in spatiotemporal analysis, particularly enhancing users’ comprehension of complex correlations. Notably, decision-making with the GC-Analyzer was more analytical and objective, fostering a deeper understanding of spatiotemporal relationships than the tabular representations typically used for correlation results» weiterlesen» einklappen

  • Spatiotemporal correlations
  • 3D-geovisualization
  • geovisual analytics
  • decision-making
  • user evaluation

Autoren


Dörner, Ralf (Autor)

Klassifikation


DFG Fachgebiet:
4.43 - Informatik

DDC Sachgruppe:
Informatik

Verbundene Forschungsprojekte


Verknüpfte Personen