Starten Sie Ihre Suche...


Durch die Nutzung unserer Webseite erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Katabatic winds and polynya dynamics at Coats Land, Antarctica

Antarctic Science. Bd. 26. H. 03. Cambridge University Press (CUP) 2013 S. 309 - 326

Erscheinungsjahr: 2013

Publikationstyp: Zeitschriftenaufsatz

Sprache: Deutsch

Doi/URN: 10.1017/s0954102013000679

Volltext über DOI/URN

Inhaltszusammenfassung


Mesoscale model simulations were conducted for the Weddell Sea region for the autumn and winter periods of 2008 using a high-resolution, limited-area, non-hydrostatic atmospheric model. A sea ice–ocean model was run with enhanced horizontal resolution and high-resolution forcing data of the atmospheric model. Daily passive thermal and microwave satellite data was used to derive the polynya area in the Weddell Sea region. The focus of the study is on the formation of polynyas in the coastal re...Mesoscale model simulations were conducted for the Weddell Sea region for the autumn and winter periods of 2008 using a high-resolution, limited-area, non-hydrostatic atmospheric model. A sea ice–ocean model was run with enhanced horizontal resolution and high-resolution forcing data of the atmospheric model. Daily passive thermal and microwave satellite data was used to derive the polynya area in the Weddell Sea region. The focus of the study is on the formation of polynyas in the coastal region of Coats Land, which is strongly affected by katabatic flows. The polynya areas deduced from two independent remote sensing methods and data sources show good agreement, while the results of the sea ice simulation show some weaknesses. Linkages between the pressure gradient force composed of a katabatic and a synoptic component, offshore wind regimes and polynya area are identified. It is shown that the downslope surface offshore wind component of Coats Land is the main forcing factor for polynya dynamics, which is mainly steered by the offshore pressure gradient force, where the katabatic force is the dominant term. We find that the synoptic pressure gradient is opposed to the katabatic force during major katabatic wind events.» weiterlesen» einklappen

Autoren


Ebner, Lars (Autor)
Haid, Verena (Autor)
Timmermann, Ralph (Autor)

Klassifikation


DFG Fachgebiet:
Atmosphären-, Meeres- und Klimaforschung

DDC Sachgruppe:
Naturwissenschaften

Verknüpfte Personen